RMR Boll, AMER n. 122, Anno XL, 2024 (2): 32-46 https://doi.org/10.57624/AMER.2024.5

VERSIONE ITALIANA LUIS ALBERTO PARRA, ALBERTO CAPPELLI, ENRICO BIZIO, RENATO JONNY FERRARI, ØYVIND WEHOLT, ALESSANDRO FELLIN, JIE CHEN

AGARICUS MANZOLLII E AGARICUS PERMIANUS DUE NUOVE SPECIE DI AGARICUS SECT. MINORES

Riassunto

Il lavoro presenta descrizioni esaurienti di Agaricus manzollii e A. permianus, due nuove specie appartenenti ad A. sez. Minores, illustrate da fotografie a colori dei caratteri macro- e microscopici come anche delle rispettive stazioni di crescita nelle Alpi italiane. Lo studio include anche una comparazione morfologico-filogenetica con i taxa viciniori.

Abstract

The paper presents exhaustive descriptions of Agaricus manzollii and A. permianus, two new species belonging to A. sect. Minores, illustrated with colour photographs of their macro- and microscopic characters as well as of the respective growing stations in the Italian Alps. The study includes also a morphological and phylogenetic comparison of the new taxa with their closest allies.

Key words Agaricus, sezione Minores, Agaricus manzollii, Agaricus permianus, Alpi, Dolomiti, Italia, Norvegia.

Introduzione

Nel nostro precedente contributo alla conoscenza della flora micologica del genere Agaricus L. delle Alpi italiane (PARRA et al. 2018), è stato osservato che lo studio dei taxa che vivono nelle Dolomiti in "zona alpina", oltre i 2.000 m s.l.m, risulta molto difficile a causa delle condizioni climatiche estreme. Allo stesso modo, anche lo studio dei taxa che vivono nell'area alpina inferiore norvegese è ugualmente difficile e impegnativo, a causa delle dure condizioni ambientali. Infatti, la fruttificazione delle specie di Agaricus alpini è di solito molto scarsa, avviene in un breve lasso di tempo alla fine dell'estate e solo in anni favorevoli.

Agaricus manzollii e A. permianus, le due specie appartenenti ad A. sez. Minores (Fr.) Henn. qui proposte come nuove, sono state raccolte rispettivamente solo due volte (2018 e 2019) e una volta (2009), nonostante i ripetuti tentativi di reperire da allora ulteriore materiale.

Per questo motivo, anche se avremmo preferito supportare la pubblicazione di queste nuove specie con un numero maggiore di reperimenti, che ci avrebbero anche permesso di conoscere meglio la loro variabilità, si è deciso di pubblicarle ugualmente a causa della loro rarità e del fatto che la loro distribuzione geografica è limitata ad aree estreme. Tra l'altro, potrebbe essere proprio questo il motivo della scarsità di raccolte per entrambe le specie. Infine, riteniamo che una migliore conoscenza delle specie che abitano "zone alpine" molto limitate possa essere utile per la protezione e la conservazione delle aree in cui vivono.

Materiale e metodi

Descrizione dei caratteri macro e microscopici

La descrizione dei caratteri macro e microscopici degli esemplari è basata su materiale fresco di entrambe le specie e segue il medesimo formato come in PARRA (2008). Le indagini microscopiche sono state effettuate su materiale secco, preventivamente reidratato con ammoniaca al 5% e osservato in rosso Congo o in acqua con un microscopio Nikon SE. Le misure delle spore sono state effettuate seguendo Heinemann & Rammeloo (1985) con la media delle spore e del rapporto Q sottolineati.

Gli olotipi di *A. manzollii* e *A. permianus* sono stati depositati nell'erbario del Museo di Storia Naturale di Venezia (MCVE). Negli erbari privati di L.A. Parra (LAPAG) sono conservati gli isotipi sia di *A. manzollii* che di *A. permianus*, mentre negli erbari di R.J. Ferrari (FRJ) e di E. Bizio (eb) sono conservati, rispettivamente, un ulteriore isotipo di *A. manzollii* e un altro di *A. permianus*.

I riferimenti e le sigle degli erbari istituzionali seguono Holmgren & Holmgren (1998).

Analisi molecolare

Il DNA totale è stato estratto seguendo un protocollo standard CTAB. L'amplificazione PCR delle regioni dello spaziatore trascritto interno (ITS 1+2) del DNA ribosomiale è stata eseguita con i primer ITS1F (Gardes & Bruns 1993) e ITS4 (White et al. 1990). Il sequenziamento è stato eseguito da STAB VIDA LDA. (Caparica, Portogallo), con i primer utilizzati per la PCR. Per l'analisi filogenetica è stato preparato un set di dati combinato comprendente 103 campioni (Tabella 1). Oltre alle tre sequenze prodotte da questo studio, 100 sequenze ITS, 69 sequenze nrLSU e 65 sequenze $tef1-\alpha$ sono state recuperate da GenBank e sono state utilizzate in studi precedenti (PARRA et al. 2024; WANG & BAU 2024), e l'origine dei campioni e i loro numeri di adesione alla GenBank sono riportati nella Tabella 1. Le sequenze sono state allineate, per ogni regione, in modo indipendente utilizzando MAFFT (Катон & Standley 2013), guindi aggiustate manualmente in BioEdit v. 7.0.4 (HALL 2007). L'analisi di massima verosimiglianza (ML) è stata eseguita in RAXMLHPC2 v. 8.2.12 (STAMATAKIS 2014) come implementato nel portale Cipres (MILLER et al. 2010), secondo un modello GTRGAMMA con mille repliche di bootstrap rapido (BS). Il set di dati combinato è stato suddiviso in regioni ITS, LSU e tef1- α . Il miglior modello di sostituzione per ogni partizione è stato dedotto con il programma MrModeltest 2.2 (Nylander 2004): GTR+I+G per ITS e LSU, SYM+I+G per tef1- α . L'analisi di inferenza bayesiana (BI) è stata eseguita con MrBayes v. 3.1.2 (Ronquist & Huelsenbeck 2003). Sono state eseguite due serie di sei catene di Markov per un milione di generazioni, con campionamenti ogni 100 generazioni. Il burn-in è stato determinato controllando i grafici delle tracce di verosimiglianza in Tracer v. 1.6 (RAMBAUT et al. 2014) e successivamente scartato. I risultati sono stati visualizzati in FigTree v. 1.4.0. (http://tree.bio.ed.ac.uk/software/ figtree/) (Fig. 1).

Taxon	Esemplare	Codice GenBank			Origine
		ITS	LSU	tef1-α	geografica
A. aridicola	LAPAG589	KT951331	KX084027	KX198081	Spagna
A. armandomyces T	ZRL2015992	KX684860	KX684882	KX684906	Cina
A. arrillagarum	LAPAG810	KF447900	KX083985	KT951592	Spagna
A. badioniveus T	LD2012131	KU975117	-	-	Tailandia
A. blatteus T	ZRL2012004	KT951355	KT951457	KT951608	Cina
A. bonisquamulosus T	ZRL2010106	KX657047	KX656950	KX684951	Cina
A. brunneolus	LAPAG938	KU975082	KX083997	KX198062	Spagna
A. brunneolutosus T	MS514	KU975111	KX084006	-	Cina
A. callacii T	AH42929	KF447899	KX083984	KX198051	Spagna
A. campbellensis T	GAL9420	DQ232644	DQ232657	-	Nuova Zelanda

Tabella 1. Esemplari e sequenze utilizzati per le analisi filogenetiche. Le nuove specie e le nuove sequenze sono in grassetto. "T" si riferisce agli esemplari tipo.

(continua)

Taxon	Esemplare	Codice GenBank			Origine
		ITS	LSU	tef1-a	geografica
A. campestris T	LAPAG370	JQ903618	KP739803	KR006636	Spagna
A. candidolutescens T	LD2012129	KT951335	KT951525	KT951616	Tailandia
A. catenatus T	ZRL2012104	KX657023	KX656963	KX684957	Cina
A. cerinipileus T	ZRL2012001	KX657021	KX656957	KX684953	Cina
A. cf. kerriganii	WC912	AY484681	-	-	USA
A. chartaceus T	H6271	JF495048	-	-	Australia
A. coccyginus	ZRL2012576	KT951372	KT951499	KT951596	Cina
A. colpetei T	TL2424	JX984565	-	-	Australia
A. columellatus	SB-2015	KJ912899	-	-	USA
A. comtulus	LAPAG303	KU975078	KX083986	KX198052	Spagna
A. dilatostipes	ZRL2014450	KX656999	KX656941	KX685003	Cina
A. dulcidulus	PRM909627	KF447894	-	KX198064	Repubblica Ceca
A. edmondoi	LAPAG412	KT951326	KT951481	KT951590	Spagna
A. elongatestipes T	ZRL2013271	KX657002	KX656946	KX684975	Cina
A. fimbrimarginatus T	LD201250	KU975119	KX084017	KX198076	Tailandia
A. flammicolor T	LD201502	KU975114	KX084009	KX198042	Tailandia
A. flavoaurantiacus T	MFLU16-0980	KU975107	KX084002	KX198069	Cina
A. flavopileatus T	MS596	KU975121	KX084022	KX198078	Cina
A. friesianus	LAPAG592	KT951316	KX083992	KT951594	Francia
A. gemlii T	AH44510	KF447891	KX083989	-	Spagna
A. gemloides T	ZRL2014084	KT633271	KX641405	KX684986	Cina
A. glabriusculus T	SWAT SH-7	MK751852	-	-	Pakistan
A. globosporus T	ZRL2012656	KX657039	-	KX684968	Cina
A. heinemannianus	LAPAG302	KF447906	-	KX198056	Spagna
A. huijsmanii	LAPAG639	KF447889	KT951444	KT951571	Spagna
A. iesu-et-marthae	LAPAG41	KF447904	-	-	Spagna
A. indicus T	TBGT16128	OR661746	-	-	India
A. jacobi	LAPAG52	KF447895	KX083996	KX198061	Spagna
A. jingningensis T	ZRL20151562	KX684877	KX684895	KX684917	Cina
A. kerriganii T	AH44509	KF447893	KX083999	KX198066	Spagna
A. laeticulus T	Goossens5272	KX671705	-	-	RD Congo

(continua)

Taxon	Esemplare	Codice GenBank			Origine
		ITS	LSU	tef1-a	geografica
A. lamelliperditus	MDBF61/96	JX984559	-	-	Australia
A. latiumbonatus T	SWAT SH166	MK751861	MK751858	-	Pakistan
A. leucocarpus	LD201226	KU975102	KX083982	KX198049	Tailandia
A. leucocarpus T	LD201215	KU975101	KX083981	KX198048	Tailandia
A. lodgeae	LAPAM14	KT951312	-	KT951613	Repubblica Dominicana
A. luteofibrillosus	LD201501	KU975108	KX084003	KX198041	Tailandia
A. luteomaculatus	CA331	KF447901	-	KX198053	Francia
A. luteopallidus T	LD2012113	KU975124	KX084026	KX198080	Tailandia
A. mangaoensis T	ZRL2010056	KX657042	KX656956	KX684946	Cina
A. marisae T	LAPAG138	KU975083	KX083998	KX198065	Spagna
A. matrum T	AH44506	KF447896	KX083991	KX198058	Spagna
A. manzollii T	MCVE 31982	PP864485	PP909787	PP911358	Italia
A. manzollii	JH-A1-18	PP864486	-	-	Norvegia
A. manzollii	GAL3083	EF460374	EF460399	-	USA
A. manzollii	GAL8696	EF460368	-	-	USA
A. megalosporus	ZRL2012199	KT951367	KT951470	KT951595	Tailandia
A. microviolaceus T	ZRL2012718	KX657033	KX656980	KX684971	Cina
A. midnapurensis	CUH AM718	OL467539	-	-	India
A. minipurpureus T	ZRL2010058	KX657043	KX656953	KX684947	Cina
A. neimengguensis T	ZRL20151845	KX684870	KX684902	KX684924	Cina
A. pallens	LAPAG441	KF447898	-	KX198067	Spagna
A. palodensis T	TBGT17483	OR661748	-	-	India
A. parvibicolor T	LD2012116	KP715162	KX084016	KX198075	Tailandia
A. parvibrunneus T	ZRL20161053	MG137001	MG196345	MG196351	Cina
A. patris T	LD201224	KU975118	KX084012	KX198073	Tailandia
A. permianus T	MCVE 31981	PP864487	-	-	Italia
A. pseudolutosus	LAPAG454	KT951329	KT951453	KT951602	Spagna
A. pseudopallens T	ZRL20151552	KX684874	KX684891	-	Cina
A. pseudopurpurellus	ZRL2014063	KX656988	KX641404	KX684985	Cina
A. purpurellus	LAPAG944	KU975076	KX083994	KX198060	Repubblica Ceca
A. purpureofibrillosus T	ZRL3080	JF691542	KX084021	-	Tailandia

(continua)

Taxon	Esemplare	Codice GenBank			Origine
		ITS	LSU	tef1-a	geografica
A. purpureosquameus T	LE2016047	MF197451	-	-	Tailandia
A. purpureosquamulosus	CUH AM716	OL467541	-	-	India
A. robustulus T	CA847	KU975086	KX084034	KX198039	Tailandia
A. rufifibrillosus	ZRL20151536	KX684878	KX684893	KX684915	Cina
A. rufipileus T	ZRL2014140	KX656991	KX656937	KX684991	Cina
A. sodalis T	LD2012159	KP715161	KX084014	KX198074	Tailandia
A. sp.	Vellinga2360	AF482831	AF482877	-	USA
A. sp.	ZRLLD013	KT951384	KT951516	KT951604	Tailandia
A. sp.	PS036	KU975087	KX084035	KX198036	Tailandia
A. sp.	ZRL3056	JF691541	KX084020	-	Tailandia
A. sp.	PYP014	KU975091	-	-	Tailandia
A. sp.	TL2307	JF495058	-	-	Australia
A. sp.	ZRL20151437	KX684876	KX684892	KX684914	Cina
A. sp.	NTT72	JF514539	-	-	Tailandia
A. sp.	CA935	KU975085	KX084036	KX198034	Tailandia
A. sp.	MS386	KU975113	KX084008	KX198044	Cina
A. sp.	ZRLWXH3064	KX657010	-	-	Cina
A. sp.	ZRLWXH3067	KT951387	KT951497	KT951611	Cina
A. sp.	ZD1528	KU975104	KX083987	KX198054	Cina
<i>A</i> . sp.	LD201252	KU975103	-	KX198050	Tailandia
A. sp.	MATA774	JF727871	-	-	Messico
A. sp.	CA845	KU975084	KX084033	KX198035	Tailandia
A. sp.	ZRLWXH3161	KT951391	KT951526	KT951615	Cina
A. sp.	LAH35900	MK659941	-	-	Pakistan
A. stevensii	FS 06-02-09	KJ877785	-	-	USA
A. subiculosus T	AH56332	PP313292	PP291842	PP317134	Puerto Rico
A. viridopurpurascens	Horak68/79	JF514525	-	-	Nuova Zelanda
A. velutinosus T	HMJAU 67768	OR690296	OR690376	OR711546	Cina
A. wariatodes	TWM1589	JF495052	JF495030	-	Australia
A. wayanadensis T	TBGT18860	OR661750	-	-	India
A. yanzhiensis T	ZRL20162082	MG137003	MG196346	-	Cina

Fig. 1. Filogramma di massima verosimiglianza di *Agaricus* subg. *Minores* risultante dall'analisi dei dati di sequenza ITS, LSU e tef1- α . L'albero RAxML delle seuenze ITS con il miglior supporto statistico ha come outgroup *A. campestris*. Sono indicati i valori di supporto bootstrap superiori al 50% e le probabilità posteriori bayesiane superiori a 0,8. Le nuove specie sono in rosso. T = Tipo.

Agaricus manzollii L.A. Parra, R.J. Ferrari, Weholt, A. Fellin, Cappelli & Linda J. Chen sp. nov. (Fig. 2).

Olotipo ITALIA: Trentino-Alto Adige, San Vigilio di Marebbe (BZ), Gran Fanes (Parco Naturale Fanes-Senes-Braies), a circa 2.150 m s.l.m., 46°35′38.643"N, 12°1′18.135"E, 30/08/2019, *leg*. R.J. Ferrari, MCVE 31982.

Etimologia in onore del memorabile presidente dell'Associazione micologica AMB di Brunico (Bolzano-Italia), Lucio Manzolli.

Diagnosi

Agaricus manzollii appartiene ad A. sez. Minores ed è filogeneticamente distinto, ma vicino a A. hujismanii e A. matrum. Dal punto di vista della morfologia microscopica, la nuova specie differisce per le spore più grandi rispetto alle altre due specie e per la mancanza di cheilocistidi, abbondanti invece in entrambe le altre.

Descrizione dei caratteri macroscopici

Cappello 1,5-3 cm, dapprima tronco-conico, infine appianato con centro depresso e margine incurvato. Superficie asciutta, opaca, con sottili fibrille radiali. Da giovane biancastra con un'area discale da crema a grigio chiaro, che è uniforme o a squame appressate, ingiallente per sfregamento e che, col tempo, diventa ocra-grigiastro sordido al centro e grigio plumbeo sul margine. Margine di poco eccedente le lamelle, fino a 0,5 mm.

Lamelle libere, fitte, con lamellule intercalate, prima biancastre, infine bruno scuro, quasi nere con margine più chiaro.

Gambo 2-3 × 0,5-0,7 cm, da clavato a leggermente bulboso alla base (1 cm), provvisto di un anello nella metà superiore, liscio, da bianco a ocraceo pallido sopra e sotto l'anello, virante al giallo alla base per sfregamento o con l'età.

Anello supero, semplice, molto stretto, sottile, fragile, submembranoso, bianco, che diventa giallo con il tempo o per sfregamento.

Carne bianca, immutabile o leggermente ingiallente alla base del gambo. Odore anisato.

Descrizione dei caratteri microscopici

Spore 4,9-<u>5,5</u>-6 × 3,6-<u>4</u>-4,3 μ m, Q = 1,28-<u>1,39</u>-1,56, da largamente ellissoidali a ellissoidali, marrone scuro, lisce, a parete spessa, prive di poro apicale, generalmente uniguttulate.

Basidi 15-22 × 6-8 μ m, generalmente 4-sporici, alcuni 1-, 2- o 3-sporici, clavati o leggermente troncati all'apice, ialini o con pigmento interno diffuso di colore marrone scuro, con sterigmi lunghi fino a 5 μ m.

Cheilocistidi assenti.

Pleurocistidi assenti.

Superficie inferiore dell'anello composta da ife cilindriche, larghe 3-12 μ m, le ife più larghe più costrette ai setti, più contorte e ramificate rispetto alle ife della pileipellis, senza elementi rigonfi, ialine. Elementi terminali non presenti.

Pileipellis a cutis di ife cilindriche larghe 2-11 µm, non o leggermente costrette ai setti, ialine, senza pigmenti interni o parietali. Elementi terminali con apice arrotondato.

Giunti a fibbia assenti in tutte le strutture studiate.

Reazioni macrochimiche le reazioni di Schäffer e con KOH non sono state testate su materiale fresco. Sul materiale essiccato la reazione di Schäffer era risultata positiva, rossa sul cappello e alla base del gambo. La reazione con KOH era, invece, difficilmente percepibile a causa del colore giallo ocraceo scuro del materiale essiccato.

Fig. 2. Agaricus manzollii. A-B. Ex situ; C. In habitat; D. Basidi; E. Spore; F. Ife dell'anello; G. Ife della pileipellis;
H. Elemento terminale della pileipellis. A-B: MCVE 31982. C: JH-A1-18. E-H: LAPAG1417. Foto A-B: Renato J. Ferrari. C: J. Høgås. D-H: Luis A. Parra

Tipo di crescita, habitat e distribuzione gregario in piccoli gruppi (due o tre basidiomi) nella seconda metà dell'estate in aree alpine su tappeti di *Dryas octopetala* L. Conosciuto finora solo nelle zone alpine italiane (**Fig. 3**) e norvegesi e dalla tundra dell'Alaska negli Stati Uniti (GEML *et al.* 2008). Le raccolte finora disponibili suggeriscono che questa specie prediliga habitat con temperature molto fredde.

Materiale esaminato: ITALIA, Trentino-Alto Adige, San Vigilio di Marebbe (BZ), Gran Fanes (Parco Naturale Fanes-Senes-Braies), a circa 2.150 m s.l.m., 46°35′38.643"N, 12°1′18.135"E, 30/08/2019, *leg.* R.J. Ferrari, MCVE 31982 (olotipo); FRJ072-2019 e LAPAG1396 (isotipi). NORVEGIA, reg. Helgeland, prov./contea di Norland, loc. Rana, a circa 650 m s.l.m., 66°07′37.4″N, 14°23′10.7″E, 16/09/2018, *leg.* J. Høgås, JH-A1-18 (duplicato LAPAG1417).

TASSONOMIA

Commenti sull'analisi filogenetica

GEML *et al.* (2008) hanno inserito due raccolte dell'Alaska, identificate come GAL3083 e GAL8696, nel loro lavoro sulle specie artiche di *Agaricus*, cresciute nella tundra artica. Le sequenze ITS di queste due raccolte sono state depositate in GenBank con i codici EF460374 e EF460368 rispettivamente e presentano una sequenza ITS identica al 100% a quella dell'olotipo di *A. manzollii*. La raccolta norvegese possiede 5 posizioni eteromorfe in cui è presente un allele delle altre raccolte. Quindi, nonostante l'enorme distanza tra i siti di crescita, geneticamente la specie non mostra una grande variabilità nella regione ITS.

Confrontando la sequenza ITS di *A. manzollii* con tutte le sequenze ITS disponibili di *A.* sez. *Minores,* questa è priva di qualsiasi marcatore ITS specie-specifico. Secondo la nostra analisi filogenetica, *A. manzollii* si pone come clade gemello di *A. friesianus* L.A. Parra, Olariaga & Callac e di *A. matrum* L.A. Parra, A. Caball. S. Serrano, E. Fern. & Callac con un forte supporto (82/0,98). Tuttavia, *A. manzollii* differisce da *A. friesianus* per 6 posizioni nella regione ITS e 18 posizioni nella regione *tef1-a*, e da *A. matrum* per 8 posizioni in entrambe le regioni ITS e *tef1-a*.

Fig. 3. Gran Fanes. Luogo di raccolta di Agaricus manzollii.

Foto di Renato J. Ferrari

Commenti sulla morfologia

Agaricus manzollii è caratterizzato da un cappello biancastro con centro grigiastro pallido privo di qualsiasi tonalità rosa o violacea. L'anello è semplice, molto stretto, fragile, e la carne bianca, immutabile o leggermente ingiallente alla base del gambo, con odore simile all'anice. Microscopicamente le spore misurano $4,9-5,4-6 \times 3,6-3,9-4,3 \mu m$ e i cheilocistidi sono completamente assenti. La sua distribuzione sembra essere confinata in aree con condizioni di freddo estremo come tundra o zone alpine. Le raccolte dell'Alaska sono state pubblicate senza alcuna descrizione o illustrazione morfologica (GEML *et al.* 2008) e i loro caratteri morfologici sono per noi sconosciuti.

Nella letteratura micologica si trova difficilmente menzione di raccolte alpine o artiche di *Agaricus* sez. *Minores* che siano accompagnate almeno da una breve descrizione. KÜHNER (1974) ha registrato due raccolte di "*Agaricus rubellus* (Gillet) Sacc." [nome illegittimo, non *Agaricus rubellus* Scop., che è *Entoloma rubellum* (Scop.) Gillet] nella Lapponia svedese a 700 m s.l.m., e due raccolte di *Agaricus purpurellus* nel "Parc National de la Vanoise" delle Alpi francesi a 2.150 m s.l.m., in entrambi i casi con presenza di *Dryas* come nelle nostre raccolte di *A manzollii*. Tuttavia, in tutte queste raccolte i basidiomi presentavano cappello con tinte violacee o vinose e cheilocistidi abbondanti e distintivi. LUCCHINI (1997) cita pure due raccolte di "*Agaricus semotus* Fr." nelle Alpi svizzere a 1.950 m e 2.260 m s.l.m., in prati alpini, ma questa specie è sempre stata interpretata con un cappello rosato o violaceo al disco e cheilocistidi distintivi, il che corrisponde alla descrizione e alla fotografia fornita di una di esse.

Dal punto di vista filogenetico i taxa più strettamente correlati sono *A. friesianus* L.A. Parra, Olariaga & Callac e *A. matrum* L.A. Parra, A. Caball. S. Serrano, E. Fern. & Callac, ma entrambe le specie hanno spore più piccole e cheilocistidi abbondanti. Inoltre, *A. friesianus* ha un cappello con toni rosati o violacei al disco, mentre in *A. matrum* la superficie pileica è interamente bianca.

Agaricus permianus L.A. Parra, Bizio, Cappelli & Linda J. Chen sp. nov. (Fig. 4).

Olotipo ITALIA, Trentino-Alto Adige, Moena (TR), loc. Forcella Grana, a circa 2.300 m s.l.m., 46°21′23″N; 11°45′37″E, 18/08/2009, *leg*. E. Bizio, A. Aiardi, A. Castellan & C. Zoldan, MCVE 31981.

Etimologia dal Latino *permianus,* in riferimento al periodo permiano, perché i porfidi quarziferi del permiano costituiscono il substrato del terreno in cui è stata trovata la nuova specie.

Diagnosi

Agaricus permianus appartiene ad A. sez. Minores ed è filogeneticamente distinto, ma vicino a A. huijsmanii, il quale si differenzia anche per il cappello bianco privo di sfumature rosate o violacee, per la crescita in boschi di Fagus e dal punto di vista della morfologia microscopica, sia per spore e cheilocistidi più piccoli di quelli della nuova specie.

Descrizione dei caratteri macroscopici

Cappello 3-6 cm, dapprima emisferico, poi convesso, infine più o meno appianato con margine incurvato. Superficie asciutta, opaca, dapprima radialmente fibrillosa, poi spesso lacerata in grandi scaglie poligonali in un'area centrale più o meno ampia. Da giovane con fibrille vinacee radiali, appressate su sfondo biancastro, più dense al centro, col tempo il centro areolato e le fibrille disposte radialmente diventano di un bruno-violaceo sporco su uno sfondo ocraceo, che diviene giallo per sfregamento. Margine eccedente le lamelle fino a 2 mm, appendicolato da piccoli frammenti di anello.

Lamelle libere, fitte, con lamellule intercalate, prima biancastre, poi grigio-rosate, infine marrone scuro quasi nero con bordo più chiaro.

Fig. 4. Agaricus permianus. A. In habitat; B. Basidi; C. Spore; D. Cheilocistidi; E. Ife dell'anello; F. Ife della pileipellis; A: MCVE 31981. B-F: LAPAG1395. Foto: A: Enrico Bizio. B-F: Luis A. Parra

Gambo 4-8 × 0,8-1 cm, da clavato a leggermente bulboso alla base (1,5 cm), provvisto di un anello nella metà superiore, sopra l'annello bianco e liscio, sotto bianco, liscio o leggermente fibrilloso, alla base virante al giallo per sfregamento o con l'età, con abbondanti rizomorfe bianche.

Anello supero, semplice, molto stretto, sottile, fragile, submembranoso, bianco, che diventa giallo con il tempo o per sfregamento.

Carne bianca, immutabile o leggermente ingiallente alla base del gambo. Odore di anice, chiaramente di mandorle per sfregamento del margine pileico.

Descrizione dei caratteri microscopici

Spore 4,8-<u>5,4</u>-6,1 × 3,7-<u>3,9</u>-4,2 μ m, Q = 1,25-<u>1,38</u>-1,49, da largamente ellissoidali a ellissoidali, marrone scuro, lisce, a parete spessa, prive di poro apicale, generalmente uniguttulate.

Basidi 15-20 × 5-9 μ m, generalmente 4-sporici, clavati o leggermente troncati all'apice, ialini, con sterigmi lunghi fino a 3 μ m.

Cheilocistidi molto abbondanti, ialini, di solito semplici, globosi, sferopeduncolati, piriformi o largamente clavati, 6-52 × 5-45 µm.

Pleurocistidi assenti.

Superficie inferiore dell'anello composta da ife cilindriche, larghe 2-6 µm, non o leggermente costrette ai setti, senza elementi rigonfi, ialine. Elementi terminali non osservati.

Pileipellis a cutis di ife cilindriche larghe 2-14 μ m, tanto più larghe quanto più costrette ai setti. Elementi terminali scarsi, con apice arrotondato.

Giunti a fibbia assenti in tutte le strutture studiate.

Reazioni macrochimiche le reazioni di Schäffer e con KOH non sono state testate su materiale fresco. Su materiale essiccato la reazione di Schäffer era positiva, rossa alla base del gambo, non percepibile sulla superficie del cappello. La reazione con KOH era difficilmente percepibile a causa del colore giallo ocraceo scuro del materiale essiccato.

Tipo di crescita, habitat e distribuzione gregario in piccoli gruppi (solo tre basidiomi trovati) nella seconda metà dell'estate in tappeto alpino di salici nani, con *Salix retusa* L., su un substrato di rocce estrusive (porfidi quarziferi permiani). Conosciuto finora solo dalle Alpi italiane (**Fig. 5**).

Materiale esaminato: ITALIA, Trentino-Alto Adige, Moena (TN), loc. Forcella Grana, a circa 2.300 m s.l.m., 46°21′23″N; 11°45′37″E, 18/08/2009, *leg*. E. Bizio, A. Aiardi, A. Castellan & C. Zoldan, MCVE 31981 (olotipo); eb09081808 e LAPAG1395 (isotipi).

TASSONOMIA

Commenti sull'analisi filogenetica

Confrontando la sequenza ITS di *A. permianus* con tutte le sequenze ITS disponibili di *A.* sez. *Minores*, questa è priva di qualsiasi marcatore ITS specie-specifico. Secondo la nostra analisi filogenetica, *A. permianus* è strettamente correlato ad *A. huijsmanii* con pieno supporto (100/1). Tuttavia, senza considerare gli eteromorfismi, le loro sequenze ITS differiscono ancora in cinque posizioni.

Commenti sulla morfologia

Agaricus permianus è caratterizzato da un cappello con fibrille vinaceo-violacee, un anello semplice, molto stretto, fragile ed evanescente, e una carne bianca immutabile, talora leggermente ingiallente solo alla base del gambo. Le spore misurano 4,8-<u>5,4</u>-6,1 × 3,7-<u>3,9</u>-4,2 µm e i cheilocistidi, ben sviluppati e abbondanti, misurano 6-52 × 5-45 µm.

Fig. 5. Forcella Grana. Luogo di raccolta di Agaricus permianus.

Foto di Enrico Bizio

Le raccolte alpine di KÜHNER (1974) e LUCCHINI (1997) appartenenti ad A. sez. *Minores*, citate nei commenti tassonomici di *A. manzollii*, si differenziano per avere cheilocistidi o molto più stretti o assenti.

Dal punto di vista filogenetico, i taxa più strettamente correlati sono *A. velutinosus* T. Bau & S.E. Wang, *A. subiculosus* K.O. Mill., Angelini, L.A. Parra & Linda J. Chen e, soprattutto, *A. huijsmanii* Courtec. *Agaricus velutinosus* si differenzia per avere basidiomi molto più piccoli, superfici pileica e del gambo vellutate e cheilocistidi molto più stretti (19-32 × 7-13 µm). *Agaricus subiculosus* è una specie lignicola tropicale con un cappello minuto (0,5-1,5 cm) che cresce da un subicolo attaccato al substrato, ha spore molto più piccole (3,9-4,7 × 2,8-3,3 µm) e cheilocistidi simili ai basidioli. *Agaricus huijsmanii* ha un habitat diverso (*Fagus* sp.), un cappello bianco senza nessun tono rosa o violaceo, e sia le spore (di media 5 × 3,4 µm) che i cheilocistidi (9-25 × 9-12 µm) sono più piccoli.

Ringraziamenti

Si ringraziano A. Aiardi, E. Alpago, A. Castellan, G.F. Lucchini e C. Zoldan e l'associazione micologica AMB di Brunico (BZ) per il loro supporto.

Indirizzi degli autori

Luis Alberto Parra Avda. Padre Claret 7, 5º G, 09400 Aranda de Duero, Burgos, Spagna. E-mail: agaricus@telefonica.net Alberto Cappelli Via Don Mazzolari 3, 21047 Saronno, Varese, Italia. E-mail: laura_alberto@alice.it ENRICO BIZIO Società Veneziana di Micologia, c/o Museo di Storia Naturale di Venezia Santa Croce 1730, 30135 Venezia, Veneto, Italia. E-mail: enricobizio@gmail.com

Renato Jonny Ferrari Santo Stefano 46, 39030 San Lorenzo di Sebato, Bolzano, Italia. E-mail: maserati92@hotmail.it

ØYVIND WEHOLT Høyåslia 9, N-1657 Torp, Norvegia. E-mail: o-weholt@online.no

Alessandro Fellin Via G. Canestrini 10/B, 38028 Novella, Trento, Italia. E-mail: fellin6384@yahoo.it

IIE CHEN

Unidad Académica de Biotecnología y Agroindustrial, Universidad Politécnica de Huatusco, Huatusco, 94116 Veracruz, Messico. E-mail: chenjie0917@gmail.com

Bibliography

- GARDES M. & BRUNS T.D. 1993: ITS primers with enhanced specificity for basidiomycetes application to the identification of mycorrhizae and rusts. *Mol. Ecol.* 2: 113-118.
- GEML J., LAURSEN G. & TAYLOR L. 2008: Molecular diversity assessment of artic And boreal Agaricus taxa. Mycol. 100 (4): 577-589.
- HALL T. 2007: BioEdit v7. Available from: http://www.mbio.ncsu.edu/BioEdit/BioEdit.html. Accessed on 19 Aug. 2014.
- HEINEMANN P. & RAMMELOO J. 1985: De la mesure des spores et son expression. Agarica 6: 366-380.
- HOLMGREN P.K. & HOLMGREN N.H. 1998 [continuously updated]: Index Herbariorum: A global directory of public herbaria and associated staff. New York Botanical Garden's Virtual Herbarium. (http://sweetgum. nybg.org/ih)
- JAMONI P.G. 2006: Catalogo sistematico, ecologico e ragionato dei macromiceti della zona alpina. Fungi e Amb. 100: 1-151.
- KATOH K. & STANDLEY D.M. 2013: MAFFT multiple sequence alignment software version 7: improvements in performance and usability. *Mol. Biol. Evol.* 30: 772-780.
- KÜHNER R. 1974: Agaricales de la zone alpine, Genre Agaricus L ex Fr. Trav. Sci. Parc. Natl. Vanoise 5: 131-147.
- LUCCHINI G.F. 1997: I funghi del cantone Ticino e di altre regioni svizzere ed estere conservati al Museo di storia naturale: catalogo ragionato dei reperti 1978-1996. Elena Lucchini-Balmelli, Gentilino.
- MILLER M.A., PFEIFFER W. & SCHWARTZ T. 2010: Creating the CIPRES Science Gateway for inference of large phylogenetic trees. In: *Gateway Computing Environments Workshop (GCE)*, 2010. IEEE: 1-8.
- NYLANDER J.A.A. 2004: MrModeltest 2.2 Program distributed by the author. *Evolut. Biol. Centre*, Uppsala University.
- PARRA L.A., ANGELINI C., MILLER K.O. & CHEN J. 2024: *Agaricus subiculosus*, a new species of the genus *Agaricus* sect. *Minores* from Puerto Rico (USA). *Mycol. Obs.* 8: 33-43.
- PARRA L.A., CAPPELLI A., KERRIGAN R. & BIZIO E. 2018: Agaricus porphyrocephalus subsp. alpinus a new subespecie collected in the Italian Alps. Micol. Veget. Medit. 33 (2): 67-88.
- PARRA SÁNCHEZ L.A. 2008: Agaricus L. Allopsalliota Nauta & Bas. Fungi Europaei 1. Ed. Candusso, Alassio.
- PARRA SÁNCHEZ L.A. 2013: Agaricus L. Allopsalliota Nauta & Bas. Fungi Europaei 1A. Ed. Candusso Edizioni s.a.s., Alassio.

- RAMBAUT A., SUCHARD M.A., XIE D. & DRUMMOND A. 2014: Tracer v1.6. Available from: http:// beast.bio. ed.ac.uk/Tracer. Accessed on 24 July 2015.
- RONQUIST F. & HUELSENBECK J.P. 2003: MrBayes3: Bayesian phylogenetic inference under mixed models. *Bioinform.* 19: 1572-1574.
- STAMATAKIS A. 2014: RAXML version 8: a tool for phylogenetic analysis and post-analysis of large phylogenies. *Bioinform.* 30: 1312-1313.
- WANG S.E. & BAU T. 2024: Six new species of Agaricus (Agaricaceae, Agaricales) from Northeast China. J. Fungi. 10 (1): 59.
- WHITE T.J., BRUNS T.D., LEE S. & TAYLOR J. 1990: Amplification and direct sequencing of fungal ribosomal RNA genes for phylogenetics pp. 315-322. In INNIS M.A. GELFAND D.H. SNINSKY J.J. & WHITE T.J. (editors). PCR protocols: A guide to methods and applications. Ed. Academic Press, New York.